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Abstract001

Modelling inflectional morphological system002
for a given word paradigm using neural net-003
works has been an active area of research since004
the last decade or so. In this work, we study005
the inflectional morphology for the negatively006
polarised verb paradigm of an Indo-Aryan lan-007
guage, Assamese. The motivation for this study008
lies in the fact that the inflectional morphology009
for Assamese is relatively underexplored owing010
to the lack of data for this language. In this011
work, we precisely focus on the tense and per-012
son paradigm for the negative-polarity verbs013
in the said language and test the ability of the014
neural models on performing this task. Our ex-015
perimental results on modeling the aforesaid016
morphology reveal that the Recurrent Neural017
Network (RNN) models slightly outperform the018
transformer models albeit with a small margin.019

1 Introduction020

Inflectional morphology is the process by which a021

word (such as noun or verb) is modified by applying022

certain affixation to express different grammatical023

aspects such as gender, tense and person.1 Given a024

word paradigm, this inflectional phenomena can be025

either be regular or irregular. This sort of duality026

makes it extremely challenging to generalize inflec-027

tional morphology (for new words) in alignment028

with human cognition. Training a neural model to029

learn inflectional morphology dates back to 1987030

when McClelland and Rumelhart (1987) came up031

with a neural network model capable of mapping032

English present tense verbs to their past tense in033

the case of both regular and irregular verbs. How-034

ever, the study of such architectures in modeling the035

morphology of Indic languages such as Assamese036

remains severely underexplored.037

Assamese is an Indo-Aryan language spoken038

in the North-Eastern part of India. Even though039

1https://nagelhout.faculty.unlv.edu/AGiC/
s4d.html

2https://unimorph.github.io/
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Table 1: Morphological inflection for the negatively
polarised verbশ

ু

ন based on tense and person. Underlined
are inflections as prefixes or suffixes .2

the language is spoken by nearly 15 million native 040

speakers, the language is considered to be a low- 041

resource language due to the lack of computable 042

data (Singh et al., 2024).3 From the linguistic point 043

of view, Assamese is categorised as an agglutina- 044

tive language owing to its relatively simple mor- 045

phological inflectional forms compared to fusional 046

languages (Socolof et al., 2022). However, in the 047

case of verbs with negative polarity, the inflection 048

significantly depends on the tense and the person. 049

Concretely, two distinct inflectional phenomena oc- 050

cur for the paradigm above. In the case of present or 051

future tense, the inflectional morpheme for a verb 052

with the negative polarity is determined by a pre- 053

fix to the inflected verb (e.g., নু) for first and third 054

person while for the past tense, the inflectional mor- 055

pheme for the same verb is realized as a suffix to 056

the inflected verb (e.g., নািছেল). For the Assamese 057

word, শুন (transl. ‘listen’), we show the inflectional 058

forms in Table 1 with the abbreviations having the 059

following meanings: V:verb; IND: indictive; HAB: 060

habitual; PRS: present; FUT: future; PST: past; 1,3: 061

person. 062

Mechanistic interpretability explores the com- 063

putational ability of a neural network aiming for a 064

3https://en.wikipedia.org/wiki/Assamese_
language
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thorough and precise understanding of model behav-065

ior (Bereska and Gavves, 2024). One may explore066

the model intepretability by various approaches,067

for instance probing (Belinkov, 2022), sparse au-068

toencoders (Olshausen and Field, 1997), activation069

patching (Nainani, 2024). Probing tries to establish070

whether a representation captures specific informa-071

tion or not by embedding examples that exhibit cer-072

tain information by training a neural model (Chowd-073

hury and Allan, 2024) on the frozen features. As074

a part of our future work, we will build upon the075

present study and plan to apply this method to ob-076

tain a formal explanation for our findings through077

the lens of mechanistic interpretability.078

1.1 Implementation Details079

We implemented all the models using the Open-080

NMT library (Klein et al., 2020) in line with pre-081

vious approaches for modelling language-based in-082

flections (McCurdy et al., 2020; Dankers et al.,083

2021).4 Following the setup of McCurdy et al.084

(2020), we implement the RNN architectures using085

2 layers of LSTM as encoders and 2 layers of LSTM086

as decoders. We use 300-dimensional character087

embeddings and 100-dimensional hidden layers in088

both the encoder and decoder layers. We use the089

Adadelta optimizer with a batch size 20 and a drop-090

out rate of 0.3. In the case of transformer networks,091

we follow the setup in Ma and Gao (2022). We use092

2 layers of encoder and decoder layers, 4 attention093

heads, 128 dimensions of input features, and 512 as094

the dimension of the feed-forward network while095

using self-attention. While decoding the outputs,096

we set the beam size to 12. We additionally employ097

early stopping and obtain the best performance on098

the validation set with 5 epochs while iterating over099

a grid of learning rates from 1 − 10 epochs. We100

report all the averaged results over random initial-101

izations of 3 seeds. All the models are trained on a102

single NVIDIA RTX 1080 GPU.103

2 Results and Discussion104

From Table 2 it is evident that The RNN model105

outperforms the transformer model on the test set.106

However, the performance of the transformer model107

is superior on the training and validation sets of our108

task. This reflects the ability of the transformer109

models to memorize the training data, as shown in110

Fig 1 in terms of the perplexity scores.111

4https://opennmt.net/

2 4 6 8 10
Epochs

0

10

20

30

40

Pe
rp

le
xi

ty

Model
RNN
Transformer

Figure 1: Perplexity plots for RNN and Transformer
models.

Model Train Val Test
RNN 98.1 92.2 81.2
Transformer 99.1 92.4 80.8

Table 2: Accuracy scores of different models

To analyze the gap in performance on the test set 112

for both models, we perform an error analysis on 113

the test set predictions. Both the models struggle to 114

model the inflections within the <3><p> paradigm, 115

which also has the lowest frequency in our dataset 116

This paradigm also has the widest variety of inflec- 117

tions, accounting for 7 different types of patterns. 118

The inflection frequently occurs as prefixes: েন, নু , 119

না, েনা, িন and sometimes as suffixes such as: নক 120

েৰ, নাপােত. The RNN model outperforms the trans- 121

former models by a small margin in identifying 122

these suffixes (precision: 0.45 vs 0.38). 123

The performance breakdown of the RNN model 124

is shown in Table 3. Evidently, the RNN models 125

frequently predict the inflection with a prefix, েন, 126

which has a higher occurrence in our corpus 127

3 Future Work 128

As a part of future work, we propose to explore 129

the superiority of RNN over transformer model (as 130

discussed above) employing the method of probing. 131

Paradigm P R F1
<1><t> lemma 0.92 0.87 0.89
<1><f> lemma 0.93 0.80 0.86
<1><p> lemma 0.91 0.88 0.90
<3><t> lemma 0.92 0.89 0.91
<3><p> lemma 0.45 0.59 0.51
<3><f> lemma 0.89 0.87 0.88

Table 3: Performance breakup for our best-performing
model (RNN) based on Precision (P), recall (R), and F1
scores.
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